The regio- and stereochemical polar [3 + 2] cycloaddition of azomethine ylides, which were generated by the reaction of isatin and sarcosine or benzylamine, with ()-3-aryl-1-(pyren-1-yl)prop-2-en-1-ones as dipolarophiles, was studied using experimental and theoretical methods. The chemical structures and relative configurations of all products have been fully established by 1D and 2D homonuclear and heteronuclear correlation NMR spectrometry. The effects of the electronic and steric factors of the reactions were discussed. The photophysical properties of the synthesized spiro[indoline-3,2'-pyrrolidin]-2-ones and 5'-phenyl-spiro[indoline-3,2'-pyrrolidin]-2-ones were studied. The mechanism of the reactions was investigated using global and local reactivity indices and frontier molecular orbital (FMO) analysis at the B3LYP/6-31G level of theory. The relationship between the electrophilicity index of the dipolarophiles and the Hammett constant has been studied. The theoretical scale of reactivity correctly explains the electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing substituents in the -position of the dipolarophiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081859PMC
http://dx.doi.org/10.1039/c8ra04312dDOI Listing

Publication Analysis

Top Keywords

facile access
4
access regio-
4
regio- stereoselective
4
stereoselective synthesis
4
synthesis highly
4
highly functionalized
4
functionalized spiro[indoline-32'-pyrrolidines]
4
spiro[indoline-32'-pyrrolidines] incorporating
4
incorporating pyrene
4
pyrene moiety
4

Similar Publications

Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution.

Org Lett

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials.

View Article and Find Full Text PDF

Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.

View Article and Find Full Text PDF

A Facile Approach to Tetracyclic Indolines: Highly Diastereoselective [4+2] Annulation of Indoles with Bicyclic N-Substituted Cyclobutanes.

J Org Chem

January 2025

Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf) as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.

View Article and Find Full Text PDF

Thioxanthone Synthesis from Thioureas through Double Aryne Insertion into a Carbon-Sulfur Double Bond.

Org Lett

January 2025

Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.

Thioxanthone synthesis from -silylaryl triflates and thioureas is disclosed. Double aryne insertion into the C═S double bond of thioureas and subsequent hydrolysis realized the facile preparation of thioxanthones. A simple reaction procedure and good accessibility of -silylaryl triflates allowed us to synthesize a wide range of highly functionalized thioxanthones.

View Article and Find Full Text PDF

Palladium-Catalyzed Stereospecific Glycosylation Enables Divergent Synthesis of N-O-Linked Glycosides.

Org Lett

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China.

We present a versatile palladium-catalyzed glycosylation platform that enables facile access to structurally diverse N-O-linked glycosides with constantly excellent regio- and stereoselectivities. Importantly, this approach offers a broad substrate scope, low catalyst loadings, and outstanding chemoselectivity, allowing for the selective reaction of oximes/hydroximic acids over hydroxyl groups that would otherwise pose challenges in conventional glycosylation methods. The synthetic utility of this method is further exemplified through a range of synthetic transformations and late-stage modification of bioactive molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!