The pathway mediated by jasmonic acid (JA), biosynthesized via 13-lipoxygenases (LOX), plays a central role in both plant development and defense. In rice, there are at least fourteen 13-LOXs. Yet, only two 13-LOXs have been known to be involved in the biosynthesis of JA and plant defenses in rice. Here we cloned a chloroplast-localized 13-LOX gene from rice, OsRCI-1, whose transcripts were upregulated following infestation by brown planthopper (BPH, Nilaparvata lugens), one of the most important pests in rice. Overexpression of OsRCI-1 (oeRCI lines) increased levels of BPH-induced JA, jasmonate-isoleucine, trypsin protease inhibitors and three volatile compounds, 2-heptanone, 2-heptanol and α-thujene. BPHs showed a decreased colonization, fecundity and mass, and developed slowly on oeRCI plants compared with wild-type (WT) plants. Moreover, BPH-infested oeRCI plants were more attractive to the egg parasitoid of BPH, Anagrus nilaparvatae than equally treated WT plants. The decreased attractiveness to BPH and enhanced attractiveness to the parasitoid of oeRCI plants correlated with higher levels of BPH-induced 2-heptanone and 2-heptanol, and 2-heptanone, respectively. Compared with oeRCI plants, WT plants had higher plant height and 1000-grain weight. These results indicate that OsRCI-1 is involved in herbivore-induced JA bursts and plays a role in plant defense and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14341 | DOI Listing |
Plants (Basel)
May 2024
Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China.
Green leaf volatiles (GLVs) play pivotal roles in plant anti-herbivore defense. This study investigated whether the rice 13-lipoxygense gene is involved in GLV production and plant defense in rice. The overexpression of ( lines) in rice resulted in increased wound-induced levels of two prominent GLVs, -3-hexen-1-ol and -3-hexenal.
View Article and Find Full Text PDFPlant Cell Environ
September 2022
State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!