Structural neuroplasticity in the adult brain is a process involving quantitative changes of the number and size of neurons and of their dendritic arborization, axon branching, spines, and synapses. These changes can occur in specific neural circuits as adaptive response to environmental challenges, exposure to stressors, tissue damage or degeneration. Converging studies point to evidence of structural plasticity in circuits operated by glutamate, GABA, dopamine, and serotonin neurotransmitters, in concert with neurotrophic factors such as Brain Derived Neurotrophic Factor (BDNF) or Insulin Growth Factor 1 (IGF1) and a series of modulators that include circulating hormones. Intriguingly, most of these endogenous agents trigger the activation of the PI3K/Akt/mTOR and ERK1/2 intracellular pathways that, in turn, lead to the production of growth-related structural changes, enhancing protein synthesis, metabolic enzyme functions, mitogenesis for energy, and new lipid-bilayer membrane apposition. The dopamine (DA) D3 receptor has been shown to play a specific role by inducing structural plasticity of the DAergic neurons of the nigrostriatal and mesocorticolimbic circuit, where they are expressed in rodents and humans, via activation of the mTORC1 and ERK1/2 pathways. These effects are BDNF-dependent and require the recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to allow the structural changes. Since in mood disorders, depression and anhedonia have been proposed to be associated with impaired neuroplasticity and reduced DAergic tone in brain circuits connecting prefrontal cortex, ventral striatum, amygdala, and ventral mesencephalon, activation of D3 receptors could provide a therapeutic benefit. Sustained improvements of mood and anhedonia were observed in subjects with an unsatisfactory response to serotonin uptake inhibitors (SSRI) when treated with D3-preferential D2/D3 agonists such as pramipexole and ropinirole. The recent evidence that downstream mTOR pathway activation in human mesencephalic DA neurons is also produced by ketamine, probably the most effective antidepressant currently used in subjects with treatment-resistant depression, further supports the rationale for a D3 receptor activation in mood disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/7854_2022_348 | DOI Listing |
Eur J Neurosci
January 2025
Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia.
The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.
View Article and Find Full Text PDFMemory is incorporated into the brain as physicochemical changes to engram cells. These are neuronal populations that form complex neuroanatomical circuits, are modified by experiences to store information, and allow for memory recall. At the molecular level, learning modifies synaptic communication to rewire engram circuits, a mechanism known as synaptic plasticity.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA.
Pregnancy is a period of profound biological transformation. However, we know remarkably little about pregnancy-related brain changes. To address this gap, we chart longitudinal changes in brain structure during pregnancy and explore potential mechanisms driving these changes.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!