Sea lamprey undergo programmed genome rearrangement (PGR) in which ∼20% of the genome is jettisoned from somatic cells during embryogenesis. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTranscriptome with annotations, and identified germline-specific genes (GSGs). Overall, we identified 638 GSGs that are enriched for reproductive processes and exhibit 36x greater odds of being expressed in testes than ovaries. Next, while 55% of the GSGs have putative somatic paralogs, the somatic paralogs are not differentially expressed between sexes. Further, putative orthologs of some the male-biased GSGs have known functions in sex determination or differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090840 | PMC |
http://dx.doi.org/10.1038/s42003-022-03375-z | DOI Listing |
The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFNat Commun
January 2025
BGI Research, Qingdao, 266555, China.
Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.
View Article and Find Full Text PDFJ Texture Stud
February 2025
MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal.
Assessment of sea lamprey texture from the Guadiana and Mondego River basins. Lamprey has served as food for centuries, and nowadays it is highly appreciated, mainly in southern European countries. Therefore, the quality requirements of the lamprey are closely scrutinized by consumers.
View Article and Find Full Text PDFDev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!