Hepatocellular carcinoma (HCC) is the most common primary liver tumor and one of the leading causes of cancer-related death worldwide. Chemotherapeutic agents/regimens such as cisplatin (DDP) are frequently used for advanced HCC treatment. However, drug resistance remains a major hindrance and the underline mechanisms are not fully understood. In this study, we investigated the expression pattern and function of mitochondrial fission factor (Mff) in cisplatin-resistant HCC. We found that Mff is highly expressed in cisplatin-resistant HCC tissues and cell lines. Knockdown of Mff suppresses cell proliferation and promotes cell apoptosis of HCC/DDP cells. In addition, knockdown of Mff sensitizes Huh-7/DDP cells to cisplatin treatment, inhibits cell proliferation, migration and invasion, and enhances cell apoptosis. Confocal imaging showed that knockdown of Mff inhibits the mitochondrial fission and downregulates the expression of GTPase dynamin-related protein 1 (Drp1) in cisplatin-resistant Huh-7/DDP cells. Moreover, xenograft tumor model revealed that knockdown of Mff sensitizes Huh-7/DDP xenograft tumor to cisplatin treatment . In summary, our findings suggest that Mff regulates mitochondrial Drp1 expression and promotes cisplatin resistance in HCC, which provides a potential therapeutic target for the treatment of resistant HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828151 | PMC |
http://dx.doi.org/10.3724/abbs.2022007 | DOI Listing |
Life Sci Alliance
February 2025
Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
Specific patterns of mitochondrial dynamics have been repeatedly reported to promote drug resistance in cancer. However, whether targeting mitochondrial fission- and fusion-related proteins could be leveraged to combat multidrug-resistant pediatric sarcomas is poorly understood. Here, we demonstrated that the expression and activation of the mitochondrial fission mediator DRP1 are affected by chemotherapy exposure in common pediatric sarcomas, namely, rhabdomyosarcoma and osteosarcoma.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China. Electronic address:
Int J Hematol
November 2024
Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation and the mitochondrial dynamics regulated by fusion-related genes MFN1, MFN2, and OPA1 and fission-related genes DNM1L and MFF. An analysis of previously published gene expression datasets showed that high expression of MFF was significantly associated with poor prognosis in patients with AML. Based on this finding, we investigated the impact of mitochondrial dynamics in AML.
View Article and Find Full Text PDFInt J Med Sci
May 2024
Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health.
View Article and Find Full Text PDFPhytomedicine
July 2024
Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India. Electronic address:
Background: Mitochondrial dysfunction associated with mitochondrial DNA mutations, enzyme defects, generation of ROS, and altered oxidative homeostasis is known to induce oral carcinogenesis during exposure to arecoline. Butein, a natural small molecule from Butea monosperma, possesses anti-inflammatory, anti-diabetic, and anti-cancer effects. However, the role of butein in the mitochondrial quality control mechanism has not been illuminated clearly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!