Tiliae flos metabolites and their beneficial influence on human gut microbiota biodiversity ex vivo.

J Ethnopharmacol

Microbiota Lab, Centre for Preclinical Research, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy Medical University of Warsaw, Banacha 1b Street, 02-097, Warsaw, Poland. Electronic address:

Published: August 2022

Ethnopharmacological Relevance: The linden flower (Tiliae flos) has been used for centuries to treat and relieve symptoms of the common cold, throat irritation, and upper respiratory tract disturbances. Traditionally, this herb is administered orally, and thus it undergoes intestinal metabolism. Although it is pharmacopeial plant material, there are no reports about its interaction with human gut microbiota.

Aim Of The Study: The study aimed to determine the interaction between human gut microbiota and the linden flower extracts, resulting in the biotransformation of the extract's constituents and changes in the microbiota composition.

Material And Methods: The linden flower metabolites were obtained by incubation of extract with human faecal slurries from 5 healthy donors. The UHPLC-DAD-MS analysis determined the composition of raw extract and analysis of microbial metabolites. The intestinal microbiota isolation and sequencing were used to determine changes in microbiota composition. The anti-inflammatory activity was tested using the LPS-stimulated human neutrophils model and ELISA test.

Results: After incubation of linden flower extract with human gut microbiota, twenty metabolites were detected and characterized, and three among them were identified. The extract changed human gut microbiota composition but did not cause dysbiosis (change in the abundance of forty-three genera). Raw extract and their metabolites exhibit different levels of inhibition of cytokines production by LPS-stimulated neutrophils, but the reduction of TNF-α production was observed.

Conclusions: The linden flower extract has a beneficial influence on human gut microbiota because it promotes increasing the abundance of bacteria responsible for SCFAs production. The anti-inflammatory effect might be linked to both microbiota composition changes and direct activity of bioavailable metabolites. Increased abundance of SCFAs producers may inhibit the production of pro-inflammatory cytokines. A low concentration of phenolic compounds in metabolized linden flower extract and responsible for anti-inflammatory properties, and the multitude of biological and chemical particles and their interactions may weaken these properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115355DOI Listing

Publication Analysis

Top Keywords

human gut
24
linden flower
24
gut microbiota
20
microbiota composition
12
flower extract
12
microbiota
9
tiliae flos
8
beneficial influence
8
human
8
influence human
8

Similar Publications

Immune crosstalk between respiratory and intestinal mucosal tissues in respiratory infections.

Mucosal Immunol

January 2025

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in mouse models and human samples indicate that the immune crosstalk between lung and gut critically impact and determine the course of respiratory disease.

View Article and Find Full Text PDF

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

December 2024

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.

View Article and Find Full Text PDF

Probiotics Exert Gut Immunomodulatory Effects by Regulating the Expression of Host miRNAs.

Probiotics Antimicrob Proteins

January 2025

Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.

Probiotics exert a diverse range of immunomodulatory effects on the human gut immune system. These mechanisms encompass strengthening the intestinal mucosal barrier, inhibiting pathogen adhesion and colonization, stimulating immune modulation, and fostering the production of beneficial substances. As a result, probiotics hold significant potential in the prevention and treatment of various conditions, including inflammatory bowel disease and colorectal cancer.

View Article and Find Full Text PDF

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!