There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361177 | PMC |
http://dx.doi.org/10.1016/j.pneurobio.2022.102286 | DOI Listing |
Mol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFNeurosurgery
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
Background And Objectives: Understanding and managing seizure activity is crucial in neuro-oncology, especially for highly epileptogenic lesions like isocitrate dehydrogenase (IDH)-mutant gliomas. Advanced MRI techniques such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have been used to describe microstructural changes associated with epilepsy. However, their role in tumor-related epilepsy (TRE) remains unclear.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America.
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).
View Article and Find Full Text PDFCureus
December 2024
Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, MEX.
Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.
View Article and Find Full Text PDFThe hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!