Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neuropathic and inflammatory pain are major clinical challenges due to their ambiguous mechanisms and limited treatment approaches. N-methyl-D-aspartate receptor (NMDAR) and calcium-calmodulin-dependent protein kinase II (CaMKII) are responsible for nerve system sensation and are required for the induction and maintenance of pain. However, the roles of NMDAR and CaMKII in regulating orofacial pain are still less well known. Here, we established a neuropathic pain model by transecting a mouse inferior alveolar nerve (IAN) and an inflammatory pain model by injecting complete Freunds adjuvant (CFA) into its whisker pad. The Cre/loxp site-specific recombination system was used to conditionally knock out (KO) NR2B in the trigeminal ganglion (TG). Von Frey filament behavioral tests showed that IANX and CFA-induced mechanical allodynia were altered in NR2B-deficient mice. CFA upregulated CaMKIIα and CaMKIIβ in the mouse TG and spinal trigeminal caudate nucleus (SpVc). CaMKIIα first decreased and then increased in the TG after IANX, and CaMKIIβ decreased in the TG and SpVc. CFA and IANX both greatly enhanced the expression of phospho (p)-NR2B, p-CaMKII, cyclic adenosine monophosphate (cAMP), p-ERK, and p-cAMP response element binding protein (CREB) in the TG and SpVc. These neurochemical signal pathway alterations were reversed by the conditional KO of NR2B and inhibition of CaMKII. Similarly, IANX- and CFA-related behavioral alterations were reversed by intra-ganglionic (i.g.) -application of inhibitors of CaMKII, cAMP, and ERK. These findings revealed novel molecular signaling pathways (NR2B-CaMKII-cAMP-ERK-CREB) in the TG- and SpVc-derived latent subsequent peripheral and spinal central sensitization under nerve injury and inflammation, which might be beneficial for the treatment of orofacial allodynia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2022.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!