Reported herein is an investigation of the impact of water quality parameters on the formation of carbonate radical anion (CO) and hydroxyl radical (HO) in UV/sodium percarbonate (UV/SPC) system versus in UV/hydrogen peroxide (UV/HO) system for bisphenol A (BPA) degradation in water. Pathways of CO oxidation of BPA were proposed in this study based on the evolution of direct transformation products of BPA. Observed in this study, the degradation of BPA in the UV/SPC system was slower than that in the UV/HO system in the secondary effluents collected from a local wastewater treatment plant due to the significant impact of coexisting constituents in the matrices on the former system. Single water quality parameter (e.g., solution pH, common anion, or natural organic matter) affected radical formations and BPA degradation in the UV/SPC system in a way similar to that in the UV/HO system. Namely, the rise of solution pH decreased the steady state concentration of HO resulting in a decrease in the observed pseudo first-order rate constant of BPA (k). Chloride anion and sulfate anion played a negligible role over the examined concentrations; nitrate anion slightly suppressed the reaction at the concentration of 20 mM; bicarbonate anion decreased the steady state concentrations of both CO and HO exerting significant inhibition on BPA degradation. Different extents of HO scavenging were observed for different types of natural organic matter in the order of fulvic acid > mixed NOM > humic acid. However, the impact was generally less pronounced on BPA degradation in the UV/SPC system than that in the UV/HO system due to the existence of CO. The results of this study provide new insights into the mechanism of CO based oxidation and new scientific information regarding the impact of water quality parameters on BPA degradation in the sytems of UV/SPC and UV/HO from the aspect of reactive radical formation, which have reference value for UV/SPC application in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118457DOI Listing

Publication Analysis

Top Keywords

bpa degradation
20
water quality
16
uv/spc system
16
uv/ho system
16
impact water
12
quality parameters
12
system
9
bpa
9
uv/sodium percarbonate
8
parameters formation
8

Similar Publications

Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is suspected of disturbing brain development through largely unknown cellular and molecular mechanisms. In the central nervous system, oligodendrocytes are responsible for forming myelin sheaths, which enhance the propagation of action potentials along axons. Disruption of axon myelination can have lifelong consequences, making oligodendrocyte differentiation and myelination critical stages of brain development.

View Article and Find Full Text PDF

Exposure to Bisphenol A jeopardizes decidualization and consequently triggers preeclampsia by up-regulating CYP1B1.

J Hazard Mater

December 2024

Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China. Electronic address:

Preeclampsia (PE) is a pregnancy-related disease that poses a significant threat to the health of both the mother and the fetus. Previous studies have primarily focused on the role of the placenta in PE pathogenesis; however, normal decidualization is crucial for the subsequent development of the placenta and pregnancy. Bisphenol A (BPA) is an environmental endocrine disruptor commonly used in the synthesis of polycarbonate and epoxy resins.

View Article and Find Full Text PDF

Reaction kinetics and molecular characterization of the compounds formed by photosensitized degradation of the plastic additive bisphenol A in the atmospheric aqueous phase.

Sci Rep

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.

Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.

View Article and Find Full Text PDF

Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate.

J Hazard Mater

December 2024

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO ≫ γ-MnOOH > MnO.

View Article and Find Full Text PDF

Enhanced tetracycline degradation using carbonized PEI-grafted lignin microspheres supported Fe-loading catalyst across a wide pH range in Fenton-like reactions.

Int J Biol Macromol

December 2024

School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:

Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!