Purpose: To implement a semi-automatic planning technique for whole breast irradiation with two tangential IMRT fields and to test the produced dose distribution against clinical 3DCRT plans, for introducing the technique in clinical practice.
Methods: The Auto-Planning module of the Pinnacle (Philips) treatment planning system was used for generating a Treatment Technique on left-sided breast cancer patients treated in free breathing or in deep inspiration breath hold (DIBH) and to right-sided breast cancer patients. The technique was evaluated against 3DCRT clinical plans in terms of dosimetric plan parameters. Plan robustness toward patient displacements was assessed on a subset of patients by inducing shifts to the isocenter.
Results: A statistically significant improvement in target coverage and dose homogeneity was observed for autoIMRT. No statistically significant differences were observed for ipsilateral organs, except for the ipsilateral lung in left DIBH, where slightly lower D and V are registered for autoIMRT. Slightly higher D doses (although far below the constraints) to contralateral organs were observed for autoIMRT plans. AutoIMRT plans were shown to be as robust as 3DCRT plans toward isocenter shifts, with a maximum decrease in CTV coverage of -2.2% and -2.1% for autoIMRT and 3DCRT, respectively. Average planning times were 40 min for 3DCRT and 6 min for IMRT plans.
Conclusions: The developed autoIMRT technique was proven to be advantageous for target coverage and homogeneity and sufficiently robust towards isocenter displacements. The use of automated planning consistently reduces the planning workload with improvements in plan quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2022.05.001 | DOI Listing |
Laryngoscope Investig Otolaryngol
February 2025
Objective: The primary aim of this study was to investigate the accuracy of a semi-automatic algorithm in assessing the feasibility and complexity of endoscopic stapes surgery preoperatively.
Methods: A semi-automatic algorithm was developed to simulate endoscopic stapes surgery in 3D. To test the accuracy of the algorithm, five fresh-frozen cadaveric heads (ten ears) were used.
J Inflamm Res
January 2025
Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Accurately assessing the activity of Crohn's disease (CD) is crucial for determining prognosis and guiding treatment strategies for CD patients.
Objective: This study aimed to develop and validate a nomogram for assessing CD activity.
Methods: The semi-automatic segmentation method and PyRadiomics software were employed to segment and extract radiomics features from the spectral CT enterography images of lesions in 107 CD patients.
Dent Med Probl
December 2024
Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznan University of Medical Sciences, Poland.
Background: The inferior alveolar canal (IAC) is a fundamental mandibular structure. It is important to conduct a precise pre-surgical evaluation of the IAC to prevent complications. Recently, the use of artificial intelligence (AI) has demonstrated potential as a valuable tool for dentists, particularly in the field of oral and maxillofacial radiology.
View Article and Find Full Text PDFJ Clin Med
December 2024
Herston Biofabrication Institute, Metro North Health, Herston, QLD 4029, Australia.
: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT), in combination with magnetic resonance imaging (MRI), may enhance the diagnosis and staging of prostate cancer. Image fusion of separately acquired PET/CT and MRI images serve to facilitate clinical integration and treatment planning. This study aimed to investigate different PSMA PET/CT and MRI image fusion workflows for prostate cancer visualisation.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2024
Deep brain stimulation (DBS) is an effective treatment for neurological disorders, and accurately reconstructing the DBS lead trajectories is crucial for MRI compatibility assessment and surgical planning. This paper presents a novel fully automated framework for reconstructing DBS lead trajectories from postoperative CT images. The leads were first segmented by thresholding, but would be fused together somewhere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!