Background: Peptide-based immunotherapy (PIT) was introduced as an attractive approach in allergen-specific immunotherapy (AIT). However, PIT clinical trials have shown variable results, and immune response to peptides is not precisely predictable. On the other hand, induction of antigen-specific tolerance may be augmented when allergens are combined with the regulatory T cell epitope (Tregitope). This study aimed to evaluate the therapeutic administration of a plasmid DNA encoding Tregitope and ovalbumin (OVA) immunodominant epitope in the murine model of allergy.
Methods: Following the induction of allergic rhinitis by ovalbumin, vaccinated group received three doses of recombinant plasmid containing Signal peptide-Tregitope-OVA T cell epitope. After the final OVA challenge, clinical symptoms, histopathological changes, OVA-specific IgE level, and cytokine secretion pattern of spleen cells were examined.
Results: Our data are showing that AIT with the recombinant DNA vaccine significantly suppressed airway inflammation; reduced eosinophilic infiltration in the nasal mucosa; decreased expression level of IL-4 and IL-17 in spleen cells, while IFN-γ, IL-10, and TGF-β expression were increased. Moreover, OVA-specific IgE levels were also decreased.
Conclusion: These results suggest that Tregitope-immunodominant T cell epitope fusion can act as a safe and effective approach in DNA-based allergen-specific immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2022.104534 | DOI Listing |
J Colloid Interface Sci
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:
Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:
The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
Current diagnosis and treatment of rheumatoid arthritis (RA) is still challenging. More than one-third of patients with RA could not be accurately diagnosed because of lacking biomarkers. Our recent study reported that scavenger receptor-A (SR-A) is a biomarker for RA, especially for anticyclic citrullinated peptide antibody (anti-CCP)-negative RA.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!