Fabrication of magnetite nanomaterials employing novel ionic liquids for efficient oil spill cleanup.

J Environ Manage

Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.

Published: August 2022

The oil spill represents one of the most important pollution sources for marine environments, that occurs due to tanker collisions, ship accidents, and platforms. Several techniques are used for treating oil spill disasters including chemical, physical, and biochemical. The use of chemicals, magnetite nanomaterials (MNMs) in particular, is one of the most applied techniques used for oil spill remediation due to their low cost, fast remediation, and reusability. This work aims to synthesize and use new ionic liquids (ILs) for the modification of MNMs surfaces to enhance their performance for crude oil uptake. For that, octadecylamine (OA) was reacted with epichlorohydrin (EH), followed by reaction with either diethylenetriamine (DT), or tetraethylenepentamine (TP) to obtain corresponding amines, OADT, and OATP, respectively. The produced amines were quaternized using acetic acid (AA) forming corresponding ILs, OADT-IL, and OATP-IL. The obtained ILs, OADT-IL, and OATP-IL were applied for modification of magnetite nanomaterials (MNMs) surface to obtain the surface-modified MNMs, DT-MNMs, and TP-MNMs, respectively. The surface-modified MNMs were characterized using different techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and contact angle. The efficacy of DT-MNMs, and TP-MNMs for heavy crude oil uptake (EMU) was evaluated. Further, the factors affecting on the crude oil uptake including MNMs: heavy crude oil ratio, and contact time were also evaluated. The data exhibited that, the EMU relatively declined as the ratio of DT-MNMs, and TP-MNMs decreased. Even at low MNMs:crude oil ratio (1:50), DT-MNMs, and TP-MNMs displayed EMU 87%, and 90%, respectively, which means 1 g of either DT-MNMs, or TP-MNMs can uptake 45 g, or 43.5 g, respectively. These values are high as compared with other studies that reported the use of MNMs for oil spill cleanup. Furthermore, the data indicated that the EMU increased as the contact time increased, and reached maximum EMU of 98% for both MNMs samples after 10 min.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115194DOI Listing

Publication Analysis

Top Keywords

oil spill
20
dt-mnms tp-mnms
20
crude oil
16
magnetite nanomaterials
12
oil uptake
12
oil
10
ionic liquids
8
spill cleanup
8
mnms
8
nanomaterials mnms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!