A Ti-34Nb-13Ta-5Zr (TNT5Zr) β Ti alloy with a high strength-to-modulus ratio has been developed, showing its potential to become another candidate material in load-bearing implant applications. This work mainly investigates the microstructural evolution, mechanical properties, and biocompatibility of a post-processing-treated TNT5Zr alloy manufactured via selective laser melting (SLM). Transmission electron microscopy observation shows the existence of the single beta grain matrix and alpha precipitates along the grain boundary in the SLM + HIP manufactured TNT5Zr alloy (TNT5Zr-AF + HIP), and ellipsoidal nano-sized intragranular α″ precipitates (approx. 5-10 nm) were introduced after the subsequent low-temperature aging treatment. The precipitation strengthening enables the SLM + HIP + aging manufactured TNT5Zr (TNT5Zr-AF + HIPA) alloy to show a comparable ultimate tensile strength (853 ± 9 MPa) to that of the reference material (Ti64-AF + HIP, 926 ± 23 MPa). Including the inferior notch-like surface of the test pieces, the slip-band cracking that occurs in this ductile TNT5Zr-AF + HIPA alloy is regarded as the main factor in determining its fatigue strength (170 MPa). short-term biocompatibility evaluation reveals almost no significant difference in the preosteoblast viability, differentiation, and mineralization between TNT5Zr-AF + HIPA and the reference biomaterial (Ti64-AF + HIP).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198984PMC
http://dx.doi.org/10.1021/acsbiomaterials.1c01277DOI Listing

Publication Analysis

Top Keywords

tnt5zr alloy
16
tnt5zr-af hipa
12
microstructural evolution
8
evolution mechanical
8
mechanical properties
8
post-processing-treated tnt5zr
8
alloy manufactured
8
manufactured selective
8
selective laser
8
laser melting
8

Similar Publications

A Ti-34Nb-13Ta-5Zr (TNT5Zr) β Ti alloy with a high strength-to-modulus ratio has been developed, showing its potential to become another candidate material in load-bearing implant applications. This work mainly investigates the microstructural evolution, mechanical properties, and biocompatibility of a post-processing-treated TNT5Zr alloy manufactured via selective laser melting (SLM). Transmission electron microscopy observation shows the existence of the single beta grain matrix and alpha precipitates along the grain boundary in the SLM + HIP manufactured TNT5Zr alloy (TNT5Zr-AF + HIP), and ellipsoidal nano-sized intragranular α″ precipitates (approx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!