To design nonlinear optical (NLO) materials, we focused on combinations of d metal cation (Cd)-based chloride and morpholine molecules to form organic-inorganic hybrids. The O of morpholine containing lone-pair electrons can be integrated with Cd by a ligand-to-metal charge transfer (LMCT) strategy to build acentric structures benefiting from the second-order Jahn-Teller effect. Introduction of the high-electronegativity chlorine can make polyhedrons of acentric crystals more distorted and conducive to a strong second harmonic generation (SHG) response. Therefore, (Morpholinium)CdCl crystals were constructed and synthesized by a solvent evaporation method. (Morpholinium)CdCl belongs to the orthorhombic 222 space group and shows a one-dimensional (1D) structure with distorted [CdCl] and [CdClO] octahedrons. The short cutoff edge of (Morpholinium)CdCl was determined to be about 230 nm. The SHG response of (Morpholinium)CdCl exhibited an intensity of approximately 0.73 × KDP as estimated by the powder second harmonic generation technique. Furthermore, related theoretical calculations were performed to study the relationship of the band structure, refractive anisotropy, electronic state, and nonlinear optical response. Besides, (Morpholinium)CdCl showed relatively good thermal stability. This work can serve as a guide for the design and synthesis of new large NLO hybrid crystals with d transition metals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c00922DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
12
response morpholiniumcdcl
12
second harmonic
8
harmonic generation
8
shg response
8
morpholiniumcdcl
6
organic-inorganic hybrid
4
hybrid noncentrosymmetric
4
noncentrosymmetric morpholiniumcdcl
4
morpholiniumcdcl single
4

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!