A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. | LitMetric

Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction.

ACS Appl Mater Interfaces

International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia.

Published: May 2022

Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches. This paper outlines a new approach to the thrombosis treatment via reprogrammable magnetic soft robots that penetrate, hook, and extract the plasma clots in a vein-mimicking system under applied rotating magnetic fields. We present shape-switching bioinspired soft swimmers, capable of locomotion by different mechanisms in vein-mimicking flow conditions and whose swimming efficiency is similar to animals. Further, we demonstrate the potential of a developed robot for minimally invasive thromboextraction with and without fibrinolytic usage, including hooking the plasma clot for 3.1 ± 1.1 min and extracting it from the vein-mimicking system under the applied magnetic fields. We consider an interesting solution for thrombosis treatment to avoid substantial drawbacks of the existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c04745DOI Listing

Publication Analysis

Top Keywords

thrombosis treatment
12
soft swimmers
8
minimally invasive
8
vein-mimicking system
8
system applied
8
magnetic fields
8
reprogrammable soft
4
swimmers minimally
4
invasive thrombus
4
thrombus extraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!