Current exercise recommendations make it difficult for long QT syndrome (LQTS) patients to adopt a physically active and/or athletic lifestyle. The purpose of this review is to summarize the current evidence, identify knowledge gaps, and discuss research perspectives in the field of exercise and LQTS. The first aim is to document the influence of exercise training, exercise stress, and postural change interventions on ventricular repolarization in LQTS patients, while the second aim is to describe electrophysiological measurements used to study the above. Studies examining the effects of exercise on congenital or acquired LQTS in human subjects of all ages were included. Systematic searches were performed on 1 October 2021, through PubMed (NLM), Ovid Medline, Ovid All EBM Reviews, Ovid Embase, and ISI Web of Science, and limited to articles written in English or French. A total of 1986 LQTS patients and 2560 controls were included in the 49 studies. Studies were mainly case-control studies (n = 41) and examined exercise stress and/or postural change interventions (n = 48). One study used a 3-month exercise training program. Results suggest that LQTS patients have subtype-specific repolarization responses to sympathetic stress. Measurement methods and quality were found to be very heterogeneous, which makes inter-study comparisons difficult. In the absence of randomized controlled trials, the current recommendations may have long-term risks for LQTS patients who are discouraged from performing physical activity, rendering its associated health benefits out of range. Future research should focus on discovering the most appropriate levels of exercise training that promote ventricular repolarization normalization in LQTS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurjpc/zwac081DOI Listing

Publication Analysis

Top Keywords

lqts patients
20
ventricular repolarization
12
exercise training
12
influence exercise
8
long syndrome
8
exercise
8
lqts
8
exercise stress
8
postural change
8
change interventions
8

Similar Publications

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Calmodulinopathies are caused by mutations in calmodulin (CaM), and result in debilitating cardiac arrythmias such as long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). In addition, many patients exhibit neurological comorbidities, including developmental delay and autism spectrum disorder. Until now, most work into these mutations has focused on cardiac effects, identifying impairment of Ca /CaM-dependent inactivation (CDI) of Ca 1.

View Article and Find Full Text PDF

In this case report, we present a 24-year-old woman with a previous diagnosis of epilepsy who was admitted to the hospital following loss of consciousness (LOC). It was initially assumed that this was an epileptic seizure based on her previous diagnosis of epilepsy; however, a review of her electrocardiograms (ECGs) revealed a prolonged QT interval. She was admitted to the cardiology ward for continuous ECG monitoring and subsequently developed self-limiting torsades de pointes (TDP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!