The main challenge in treating malignant brain neoplasms lies in eradicating the tumor while minimizing treatment-related damage. Conventional radiation treatments are associated with considerable side effects. Synchrotron generated micro-beam radiation (SMBRT) has shown to preserve brain architecture while killing tumor cells, however physical characteristics and limited facility access restrict its use. We have created a new clinical device which produces mini beams on a linear accelerator, to provide a new type of treatment called mini-beam radiation therapy (MBRT). The objective of this study is to compare the treatment outcomes of linear accelerator based MBRT versus standard radiation treatment (SRT), to evaluate the tumor response and the treatment-related changes in the normal brain with respect to each treatment type. Pet dogs with de-novo brain tumors were accrued for treatment. Dogs were randomized between standard fractionated stereotactic (9 Gy in 3 fractions) radiation treatment vs. a single fraction of MBRT (26 Gy mean dose). Dogs were monitored after treatment for clinical assessment and imaging. When the dogs were euthanized, a veterinary pathologist assessed the radiation changes and tumor response. We accrued 16 dogs, 8 dogs in each treatment arm. In the MBRT arm, 71% dogs achieved complete pathological remission. The radiation-related changes were all confined to the target region. Structural damage was not observed in the beam path outside of the target region. In contrast, none of the dogs in control group achieved remission and the treatment related damage was more extensive. Therapeutic superiority was observed with MBRT, including both tumor control and the normal structural preservation. The MBRT findings are suggestive of an immune related mechanism which is absent in standard treatment. These findings together with the widespread availability of clinical linear accelerators make MBRT a promising research topic to explore further treatment and clinical trial opportunities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RADE-21-00093.1 | DOI Listing |
J Clin Neurosci
January 2025
Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Background: Tremor, either in patients with Essential Tremor (ET) or Parkinson's disease (PD), constitutes the most common movement disorder. Stereotactic radiosurgery using Gamma Knife (GK) and linear accelerator (LINAC) systems, is an effective, incisionless treatment modality for ET and PD. Although these technologies have been used clinically since the 1990's, most studies have focused on GK, and efficacy, safety and time to treatment effect (latency) of GK and LINAC have not been compared.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, UK.
Ferrites are an essential material in modern industry due to their exceptional magnetic properties and high resistivity. Many applications of ferrites necessitate exposure to high energy electrons, particularly space science and particle accelerators, where charging, multipacting, and electron clouds (ECs) are major issues. ECs are of particular concern around the Ni/Zn soft ferrite kicker magnets as the large hadron collider (LHC) undergoes its high luminosity upgrade.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Management and Technology, Leuphana University, Lüneburg, Germany.
Background: Radiotherapy practice for cancer treatment is resource-intensive and demands optimised processes for patient throughput while guaranteeing the quality and safety of the therapy. With the COVID-19 pandemic, ad-hoc changes in the operation of radiotherapy centres became necessary to protect patients and staff. This simulation study aimed to quantify the impact of designated COVID-19 protection measures and pandemic-related staff absence on patient waiting times and throughput.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Trieste, 34127, Trieste, Italy.
Phase-contrast micro-tomography ([Formula: see text]CT) with synchrotron radiation can aid in the differentiation of subtle density variations in weakly absorbing soft tissue specimens. Modulation-based imaging (MBI) extracts phase information from the distortion of reference patterns, generated by periodic or randomly structured wavefront markers (e.g.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Mindanao Radiation Physics Center, MSU-Iligan Institute of Technology, Andres Bonifacio Street Tibanga, Iligan City, Lanao Norte, 9200, PHILIPPINES.
To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!