Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During 2015-2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/β receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122223 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0010426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!