Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fate of legacy and emerging flame retardants are poorly reported in developing countries, including India. Also, the positive matrix factorization (PMF) application-based source apportionment of these pollutants is less comprehensive. This study analyzed the contamination level and sources of 25 flame retardants in dust from India's central Indo-Gangetic Plain (Patna city) using the PCA and PMF model. Dust samples were collected from various functional areas of indoor (n = 22) and outdoor (n = 16) environments. The sum of four groups of FRs in indoor dust (median 8080 ng/g) was 3-4 times greater than the outdoor dust (median 2410 ng/g). The novel-brominated flame retardants (NBFRs) and organophosphate esters (OPFRs) were more dominant than polybrominated diphenyl ethers (PBDEs), indicating the influence of worldwide elimination of PBDEs. The median concentration of ∑NBFRs in indoor and outdoor dust was 1210 ng/g and 6820 ng/g, while the median concentration of ∑OPFRs was measured to be 383 ng/g and 1210 ng/g, respectively. Likewise, ∑PBDEs in indoor and outdoor dust ranged from 2-1040 ng/g (median 38.8 ng/g) to 0.62-249 ng/g (median 10.7 ng/g), respectively. Decabromodiphenylethane (DBDPE) was identified as the most abundant NBFR in dust, comprising 99.9% of ∑NBFR, while tri-cresyl phosphates (TMPPs) showed the highest concentration among OPFR and accounted for 75% ∑OPFRs. The PMF analysis indicated that a significant fraction of FRs in the dust (80%) could derive from plastics, textiles, polyurethane foam, anti-foam agents, PVC, paint, and coatings. In comparison, debromination of higher PBDE congeners contributed 20% in the dust environment. FR's estimated daily exposure risk in dust showed dermal absorption as the main route of FR's intake to adult and children populations. Children were more vulnerable to the risk of FRs than the adult population. The estimated daily exposure risk for selected FRs in this study was 4-6 orders of magnitude lesser than the respective reference dose (RfD), proposing negligible health risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20570-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!