Unlabelled: Mutations in RAS isoforms (KRAS, NRAS, and HRAS) are among the most frequent oncogenic alterations in many cancers, making these proteins high priority therapeutic targets. Effectively targeting RAS isoforms requires an exact understanding of their active, inactive, and druggable conformations. However, there is no structural catalog of RAS conformations to guide therapeutic targeting or examining the structural impact of RAS mutations. Here we present an expanded classification of RAS conformations based on analyses of the catalytic switch 1 (SW1) and switch 2 (SW2) loops. From 721 human KRAS, NRAS, and HRAS structures available in the Protein Data Bank (206 RAS-protein cocomplexes, 190 inhibitor-bound, and 325 unbound, including 204 WT and 517 mutated structures), we created a broad conformational classification based on the spatial positions of Y32 in SW1 and Y71 in SW2. Clustering all well-modeled SW1 and SW2 loops using a density-based machine learning algorithm defined additional conformational subsets, some previously undescribed. Three SW1 conformations and nine SW2 conformations were identified, each associated with different nucleotide states (GTP-bound, nucleotide-free, and GDP-bound) and specific bound proteins or inhibitor sites. The GTP-bound SW1 conformation could be further subdivided on the basis of the hydrogen bond type made between Y32 and the GTP γ-phosphate. Further analysis clarified the catalytic impact of G12D and G12V mutations and the inhibitor chemistries that bind to each druggable RAS conformation. Overall, this study has expanded our understanding of RAS structural biology, which could facilitate future RAS drug discovery.
Significance: Analysis of >700 RAS structures helps define an expanded landscape of active, inactive, and druggable RAS conformations, the structural impact of common RAS mutations, and previously uncharacterized RAS inhibitor-binding modes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256797 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-22-0804 | DOI Listing |
Dokl Biol Sci
January 2025
Biological Faculty, Moscow State University, Moscow, Russia.
Expression of 11 genes of the Hox cluster (SiHox1, 2, 3, 5, 6, 7, 8, 9/10, 11/13a, 11/13b, and 11/13c) was assessed in the sea urchin Strongylocentrotus intermedius at early developmental stages, including the blastula (13 h post fertilization (hpf)), gastrula (35 hpf), prism (46 hpf), and pluteus (4 and 9 days post fertilization (dpf)) stages. Expression of SiHox7, 11/13b, and 11/13c was observed at the blastula stage; early activation of 11/13c was detected for the first time in regular sea urchins. The expression level was very low at the gastrula and prism stages.
View Article and Find Full Text PDFOncologist
January 2025
Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Thoracic Oncology, 1066 CX Amsterdam, The Netherlands.
Introduction: We describe the safety of sotorasib monotherapy in patients with KRAS G12C-mutated advanced non-small cell lung cancer (NSCLC) and discuss practical recommendations for managing key risks.
Methods: Incidence rates of treatment-related adverse events (TRAEs) were pooled from 4 clinical trials: CodeBreaK 100 (NCT03600883), CodeBreaK 101 (NCT04185883), CodeBreaK 105 (NCT04380753), and CodeBreaK 200 (NCT04303780) and graded according to CTCAE v5.0.
Future Cardiol
January 2025
Department of Cardiovascular Disease, Baylor Scott and White Medical Center - Temple, TX, USA.
Approximately 5-10% of patients with hypertension have secondary hypertension. We describe a case of secondary hypertension from bilateral renal artery stenosis (RAS): "Pickering syndrome." This is a case of hypertension secondary to bilateral RAS which provides an opportunity to review secondary hypertension with a specific focus on RAS, in terms of when to consider work up, causes of secondary hypertension, diagnostic testing, and treatment.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia.
Engineered light-sensitive molecules offer a sophisticated toolkit for the manipulation of biological systems with both spatial and temporal precision. Notably, artificial "caged" compounds can activate specific receptors solely in response to light exposure. However, the uncaging process can lead to the formation of potentially harmful byproducts.
View Article and Find Full Text PDFJ Pathol
January 2025
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!