Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 .

Angew Chem Int Ed Engl

Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Published: July 2022

Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202202227DOI Listing

Publication Analysis

Top Keywords

circularly polarized
16
polarized electroluminescence
8
chiral multi-resonance
4
multi-resonance tadf
4
emitters
4
tadf emitters
4
emitters exhibiting
4
exhibiting narrowband
4
circularly
4
narrowband circularly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!