Human metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to the following two versions of the N protein in infected cells: N-terminal P residues interact with monomeric N (N) to maintain a pool of protein to encapsidate new RNA and C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA). Recent work on other negative-strand viruses has suggested that IBs are, at least in part, liquid-like phase-separated membraneless organelles. Here, HMPV IBs in infected or transfected cells were shown to possess liquid organelle properties, such as fusion and fission. Recombinant versions of HMPV N and P proteins were purified to analyze the interactions required to drive phase separation . Purified HMPV P was shown to form liquid droplets in isolation. This observation is distinct from other viral systems that also form IBs. Partial removal of nucleic acid from purified P altered phase-separation dynamics, suggesting that nucleic acid interactions play a role in IB formation. HMPV P also recruits monomeric N (N-P) and N-RNA to droplets . These findings suggest that HMPV P may also act as a scaffold protein to mediate multivalent interactions with monomeric and oligomeric N, as well as RNA, to promote phase separation of IBs. Together, these findings highlight an additional layer of regulation in HMPV replication by the viral P and N proteins. Human metapneumovirus (HMPV) is a leading cause of respiratory disease among children, immunocompromised individuals, and the elderly. Currently, no vaccines or antivirals are available for the treatment of HMPV infections. Cytoplasmic inclusion bodies (IBs), where HMPV replication and transcription occur, represent a promising target for the development of novel antivirals. The HMPV nucleoprotein (N) and phosphoprotein (P) are the minimal components needed for IB formation in eukaryotic cells. However, interactions that regulate the formation of these dynamic structures are poorly understood. Here, we showed that HMPV IBs possess the properties of liquid organelles and that purified HMPV P phase separates independently . Our work suggests that HMPV P phase-separation dynamics are altered by nucleic acid. We provide strong evidence that, unlike results reported from other viral systems, HMPV P alone can serve as a scaffold for multivalent interactions with monomeric (N) and oligomeric (N-RNA) HMPV N for IB formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239117PMC
http://dx.doi.org/10.1128/mbio.01099-22DOI Listing

Publication Analysis

Top Keywords

hmpv
17
human metapneumovirus
12
phase separation
12
nucleic acid
12
metapneumovirus hmpv
8
inclusion bodies
8
bodies ibs
8
dynamic structures
8
replication transcription
8
components needed
8

Similar Publications

Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection .

Front Cell Infect Microbiol

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.

View Article and Find Full Text PDF

Respiratory Syncytial Virus and Other Respiratory Viruses in Hospitalized Infants During the 2023-2024 Winter Season in Mexico.

Viruses

December 2024

Infectious Diseases Laboratory, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico.

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in young children. During the COVID-19 pandemic, a significant change in the epidemiology of RSV and other viruses occurred worldwide, leading to a reduction in the circulation of these infectious agents. After the pandemic, the resurgence of seasonal respiratory viruses occurred, but some features of these infections contrast to those registered prior to the pandemic.

View Article and Find Full Text PDF

Unlabelled: Human metapneumovirus (HMPV) is a significant respiratory pathogen, particularly in vulnerable populations.

Background: No vaccine for the prevention of HMPV is currently licensed, although several subunit vaccines are in development. Saponin-based adjuvant systems (AS), including QS-21, have transformed the field of subunit vaccines by dramatically increasing their potency and efficacy, leading to the development of several licensed vaccines.

View Article and Find Full Text PDF

After ending the three-year zero COVID policy in China, the epidemiology of other respiratory pathogens has been affected. This study aimed to characterize of common respiratory pathogen infections in pediatric patients hospitalized for acute respiratory tract infections (ARTIs) in Suzhou before and after ending the zero COVID policy. Nasopharyngeal aspirates (NPAs) were obtained from children with ARTIs (aged ≤ 16 years) at the Children's Hospital of Soochow University for the detection of respiratory syncytial virus (RSV), influenza A (FluA), FluB, human parainfluenza virus (HPIV), adenovirus (ADV), human rhinovirus (HRV), bocavirus (BoV), human metapneumovirus (HMPV), and mycoplasma pneumoniae (MP).

View Article and Find Full Text PDF

BACKGROUND Human metapneumovirus (hMPV), classified in the Pneumoviridae family, is primarily known for causing lower respiratory tract infections in children, the elderly, and immunocompromised individuals. However, rare instances have shown that hMPV can also affect other systems, such as the cardiovascular system, leading to conditions like myocarditis. CASE REPORT We describe a 68-year-old man with a medical history of diabetes, hypertension, and liver cirrhosis who presented to the Emergency Department (ED) exhibiting symptoms of fever, cough, and dyspnea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!