Metal-Phenolic Networks as Versatile Coating Materials for Biomedical Applications.

ACS Appl Bio Mater

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Published: May 2022

Polyphenols are naturally derived organic compounds that have long been used as food additives, antioxidants, and adhesives owing to their intrinsic physicochemical properties. Recently, there has been growing interest in the fabrication of coordination networks based on the self-assembly of polyphenols and metal ions, termed metal-phenolic networks (MPNs), for multiple biological applications including bioimaging, drug delivery, and cell encapsulation. The as-synthesized MPN complexes feature pH responsiveness, controllable size and rigidity, and tunable permeability based on the choice of polyphenol-metal ion pairs. The aim of this Review is to introduce the physicochemical properties of MPNs, highlight their recent biological applications in cancer theranostics and single-cell encapsulation, and discuss the future utility of MPNs for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c00136DOI Listing

Publication Analysis

Top Keywords

metal-phenolic networks
8
biomedical applications
8
physicochemical properties
8
biological applications
8
networks versatile
4
versatile coating
4
coating materials
4
materials biomedical
4
applications
4
applications polyphenols
4

Similar Publications

Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization.

View Article and Find Full Text PDF

Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.

View Article and Find Full Text PDF

Photothermal therapy (PTT) demonstrates significant potential in cancer treatment, wound healing, and antibacterial therapy, with its efficacy largely depending on the performance of photothermal agents (PTAs). Metal-phenolic network (MPN) materials are ideal PTA candidates due to their low cost, good biocompatibility and excellent ligand-to-metal charge transfer properties. However, not all MPNs exhibit significant photothermal properties, and the vast chemical space of MPNs (over 700,000 potential combinations) complicates the screening of high-photothermal materials.

View Article and Find Full Text PDF

Stable Antifouling and Antibacterial Coating Based on Assembly of Copper-Phenolic Networks.

ACS Appl Bio Mater

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Biofilm formation on medical devices has become a worldwide issue arising from its resistance to bactericidal agents and presenting challenges to eradicating biofouling adhesion, especially in biological fluids. Metal-phenolic networks have been demonstrated as a versatile and efficient strategy to prevent biofilm formation by endowing medical devices with prolonged antifouling and antibacterial activities in a one-step surface modification. In this study, we report a simple and environmentally friendly method using coordination chemistry between copper ions (Cu) and dopamine-containing copolymer to fabricate metal-phenolic network-based coatings.

View Article and Find Full Text PDF

Facile synthesis of flower-cluster ZIF nanocarriers: Performance in controlled release of thiamethoxam and insecticidal activity.

Environ Res

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China. Electronic address:

At present, it is highly important to develop nanopesticide, which can improve the effect of pesticides and reduce the risks of environmental. Zeolitic imidazolate framework (ZIF) is usually used as a nanocarrier of nanopesticide, which has a porous structure and stimuli-responsive properties. However, the drug loading performance and stability of ZIF are poor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!