Modeling Alzheimer's disease: considerations for a better translational and replicable mouse model.

Neural Regen Res

Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.

Published: November 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120700PMC
http://dx.doi.org/10.4103/1673-5374.335787DOI Listing

Publication Analysis

Top Keywords

modeling alzheimer's
4
alzheimer's disease
4
disease considerations
4
considerations better
4
better translational
4
translational replicable
4
replicable mouse
4
mouse model
4
modeling
1
disease
1

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

Magnesium Depletion Score and Mortality in Individuals with Metabolic Dysfunction Associated Steatotic Liver Disease over a Median Follow-Up of 26 Years.

Nutrients

January 2025

Division of Epidemiology, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.

Unlabelled: Metabolic dysfunction associated steatotic liver disease (MASLD) has been associated with increased risks of all-cause and cardiovascular disease (CVD) mortality. Identification of modifiable risk factors that may contribute to higher risks of mortality could facilitate targeted and intensive intervention strategies in this population. This study aims to examine whether the magnesium depletion score (MDS) is associated with all-cause and CVD mortality among individuals with MASLD or metabolic and alcohol associated liver disease (MetALD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!