Roughness Effect of Cu on Electrocatalytic CO Reduction towards C H.

Chem Asian J

College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China.

Published: July 2022

Electrochemical reduction of CO to produce valuable multi-carbon products is a promising avenue for promoting CO conversion and achieving renewable energy storage, and it has also attracted considerable attention recently. However, the synthesis of Cu electrode with a controllable electrochemical active surface area (ECSA) to understand its role in CO reduction to C H remains challenging. Herein, a series of Cu electrodes with different ECSA is synthesized through a simple oxidation-reduction approach. We reveal that the improved selectivity of C H is proportional to the ECSA of Cu in the low ECSA range, and a further increase in ECSA has a negligible effect on its selectivity. The enlarged surface area could strengthen the local pH effect near the surface of Cu electrode and suppress the generation of C products as well as H . The study provides a feasible strategy to rationally design electrocatalysts with high electrochemical CO reduction performances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202200380DOI Listing

Publication Analysis

Top Keywords

electrochemical reduction
8
surface area
8
ecsa
5
roughness electrocatalytic
4
reduction
4
electrocatalytic reduction
4
reduction electrochemical
4
reduction produce
4
produce valuable
4
valuable multi-carbon
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Electrochemical nitrate reduction to ammonia (NORR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC).

View Article and Find Full Text PDF

Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in-situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

In this study, a Cu@Ag core-shell was synthesized using a co-precipitation method. To create a new electrochemical sensor, a Cu@Ag core-shell with conductive polymers such as polyalizarin yellow R (PA) and Nafion (Nf) was immobilized on the surface of a glassy carbon electrode (Cu@Ag-Nf/PA/GCE). X-ray diffraction analysis (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) techniques were employed to characterize the Cu@Ag-Nf/PA/GCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!