In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees.

Tree Physiol

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China.

Published: October 2022

Carbon (C) allocation plays a crucial role for survival and growth of alpine treeline trees, however it is still poorly understood. Using in situ 13CO2 labeling, we investigated the leaf photosynthesis and the allocation of 13C labeled photoassimilates in various tissues (leaves, twigs and fine roots) in treeline trees and low-elevation trees. Non-structural carbohydrate concentrations were also determined. The alpine treeline trees (2000 m. a.s.l.), compared with low-elevation trees (1700 m a.s.l.), did not show any disadvantage in photosynthesis, but the former allocated proportionally less newly assimilated C belowground than the latter. Carbon residence time in leaves was longer in treeline trees (19 days) than that in low-elevation ones (10 days). We found an overall lower density of newly assimilated C in treeline trees. The alpine treeline trees may have a photosynthetic compensatory mechanism to counteract the negative effects of the harsh treeline environment (e.g., lower temperature and shorter growing season) on C gain. Lower temperature at treeline may limit the sink activity and C downward transport via phloem, and shorter treeline growing season may result in early cessation of root growth, decreases sink strength, which all together lead to lower density of new C in the sink tissues and finally limit the growth of the alpine treeline trees.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpac048DOI Listing

Publication Analysis

Top Keywords

treeline trees
32
alpine treeline
20
low-elevation trees
12
treeline
11
trees
11
situ 13co2
8
13co2 labeling
8
compared low-elevation
8
growth alpine
8
newly assimilated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!