Titanium miniplates are biocompatible materials used in modern oral and maxillofacial surgery to treat facial bone fractures. However, plate removal is often required due to implant complications. Among them, a biofilm formation on an infected miniplate is associated with severe inflammation, which frequently results in implant failure. In light of this, new strategies to control or treat oral bacterial biofilm are of high interest. Herein, the authors exploit the ability of nanorobots against multispecies bacterial biofilm grown onto facial commercial titanium miniplate implants to simulate pathogenic conditions of the oral microenvironment. The strategy is based on the use of light-driven self-propelled tubular black-TiO /Ag nanorobots, that unlike traditional ones, exhibit an extended absorption and motion actuation from UV to the visible-light range. The motion analysis is performed separately over UV, blue, and green light irradiation and shows different motion behaviors, including a fast rotational motion that decreases with increasing wavelengths. The biomass reduction is monitored by evaluating LIVE/DEAD fluorescent and digital microscope images of bacterial biofilm treated with the nanorobots under motion/no-motion conditions. The current study and the obtained results can bring significant improvements for effective therapy of infected metallic miniplates by biofilm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202200708 | DOI Listing |
Folia Microbiol (Praha)
January 2025
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8).
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity.
View Article and Find Full Text PDFMicrob Pathog
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China. Electronic address:
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China. Electronic address:
This study was designed to assess the efficacy of iron oleate lipid nanoparticles (IO-LNPs) in inducing Fenton reaction as a therapeutic approach for bacterial infections caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), both of which are common pathogens in skin wound infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!