Graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been relatively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold Regularization algorithm to multi-label classification, which is significantly simpler than the general Vector Manifold Regularization approach. We then augment our algorithm with a weighting strategy to allow differential influence on a model between instances having ground-truth vs. induced labels. Experiments on four benchmark multi-label data sets show that the resulting algorithm performs better overall compared to the existing semi-supervised multi-label classification algorithms at various levels of label sparsity. Comparisons with state-of-the-art supervised multi-label approaches (which of course are fully labeled) also show that our algorithm outperforms all of them even with a substantial number of unlabeled examples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054917 | PMC |
http://dx.doi.org/10.1007/s40747-021-00611-7 | DOI Listing |
Proc Conf Assoc Comput Linguist Meet
March 2024
Hierarchical text classification (HTC) is a complex subtask under multi-label text classification, characterized by a hierarchical label taxonomy and data imbalance. The best-performing models aim to learn a static representation by combining document and hierarchical label information. However, the relevance of document sections can vary based on the hierarchy level, necessitating a dynamic document representation.
View Article and Find Full Text PDFStat Med
February 2025
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
In biomedical studies, gene-environment (G-E) interactions have been demonstrated to have important implications for analyzing disease outcomes beyond the main G and main E effects. Many approaches have been developed for G-E interaction analysis, yielding important findings. However, hierarchical multi-label classification, which provides insightful information on disease outcomes, remains unexplored in G-E analysis literature.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.
View Article and Find Full Text PDFInt J Neural Syst
January 2025
Alibaba Cloud, Hangzhou, P. R. China.
Multi-label zero-shot learning (ML-ZSL) strives to recognize all objects in an image, regardless of whether they are present in the training data. Recent methods incorporate an attention mechanism to locate labels in the image and generate class-specific semantic information. However, the attention mechanism built on visual features treats label embeddings equally in the prediction score, leading to severe semantic ambiguity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Transmission lines are vital for delivering electricity over long distances, yet they face reliability challenges due to faults that can disrupt power supply and pose safety risks. This research introduces a novel approach for fault detection and classification by analyzing voltage and current patterns across transmission line phases. Leveraging a comprehensive dataset of diverse fault scenarios, various machine learning algorithms-including Random Forest (RF), K-Nearest Neighbors (KNN), and Long Short-Term Memory (LSTM) networks-are evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!