The movement of the cervical spine should be restricted throughout the rehabilitation phase after it has been injured. Cervical orthosis is commonly utilized in clinical settings to guarantee cervical spine stability. However, to date, the investigations are limited to patient-specific cervical fixation orthoses. This study provides a new idea for making personalized orthoses. The CT data of the patient's cervical spine were collected, then mimics were used for reconstructing the skin of the cervical spine, the Geomagic Studio was used for surface fitting, the Inspire Studio was used for structural topology optimization, redundant structures were removed, the resulting orthotics were postprocessed, and finally, it was printed with a 3D printer. No signs of pain or discomfort were observed during the wearing. The cervical spine range of motion in flexion, extension, lateral flexion, and rotation is all less than 8° after using the device. Low cost, quick manufacturing time, high precision, attractive appearance, lightweight structure, waterproof design, and practical customized orthotics for patients are all advantages of 3D printing technology in the field of orthopedics. Many possible benefits of using 3D printing to build new orthotics include unique design, stiffness, weight optimization, and improved biomechanical performance, comfort, and fit. Personalized orthotics may be designed and manufactured utilizing 3D printing technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078801PMC
http://dx.doi.org/10.1155/2022/8243128DOI Listing

Publication Analysis

Top Keywords

cervical spine
20
printing technology
12
cervical
8
cervical fixation
8
spine
5
design personalized
4
personalized cervical
4
fixation orthosis
4
orthosis based
4
printing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!