Contrasting nursery habitats promote variations in the bioenergetic condition of juvenile female red squat lobsters () of the Southern Pacific Ocean.

PeerJ

Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile.

Published: January 2023

The red squat lobster is an important fishery resource in the Humboldt Current System (HCS). This decapod is exploited in two fishing units: (a) the northern fishing unit (NFU, from 26°S to 30°S) and (b) the southern fishing unit (SFU, from 32°S to 37°S), each of which have an adjacent nursery area that is the source of recruits to replace the exploited adult populations (in the NFU: off the coast of Coquimbo (28°S) and in the SFU: off the coast of Concepción (36°S)). Marked spatial differences in the environmental conditions of the NFU and SFU, and the biogeographic break that exists between these nursery areas (30°S) may promote changes in the bioenergetic condition of new juveniles. To evaluate this, we analyzed the bioenergetic condition (measured as: body mass, lipids, proteins, glucose, and energy) of new juvenile females in the main nursery areas off the Chilean coast. The juvenile females from the SFU showed a higher body mass than those from the NFU. Consistently, the juvenile females from the SFU had a higher content of lipids, proteins, and glucose than those from the NFU, indicative of higher energy contents and a higher lipid/protein ratio in the south compared to the north. Considering the current overexploitation of this fishery resource in the HCS, it is essential to understand how the bioenergetic condition of juvenile females of may vary in nursery areas at different latitudes in order to generate sustainable fishery management policies with an ecological approach, designed specifically to each fishing unit. Furthermore, identifying the latitudinal variations of these biochemical compounds in juveniles can elucidate the geographic origin of red squat lobsters that present a "better bioenergetic condition" in the HCS, which may significantly benefit sustainable fishing certification processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078136PMC
http://dx.doi.org/10.7717/peerj.13393DOI Listing

Publication Analysis

Top Keywords

bioenergetic condition
16
juvenile females
16
red squat
12
fishing unit
12
nursery areas
12
condition juvenile
8
squat lobsters
8
fishery resource
8
body mass
8
lipids proteins
8

Similar Publications

Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential.

Bone

December 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:

Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.

View Article and Find Full Text PDF

Light intensity-regulated glycogen synthesis and pollutant removal in microalgal-bacterial granular sludge for wastewater treatment.

Water Res

December 2024

Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.

As light intensity plays a pivotal role in the microalgal-bacterial granular sludge (MBGS) process, understanding its impact on system performance and energy dynamics is essential. This study investigated the effects of varying light intensities (20, 100, 200, and 300 μ mol/m²/s) on the performance of MBGS in urban wastewater treatment, with a particular focus on glycogen accumulation and pollutant removal. The results demonstrated that light intensity significantly influenced microbial community structure, glycogen accumulation, and pollutant removal efficiency.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals Norathyriol Prolongs the Lifespan via Regulating Metabolism in .

Metabolites

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.

Background: Aging and age-related diseases are closely linked to an imbalance in energy supply and demand, a condition that can potentially be mitigated through various interventions, including the use of naturally occurring molecules. Norathyriol (NL), a tetrahydroxyxanthone compound, is prevalent in mango fruit and medicinal plants. While studies have indicated that NL may influence metabolism, its effects on aging have not been extensively explored.

View Article and Find Full Text PDF

The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production.

Metabolites

December 2024

Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China.

Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions.

View Article and Find Full Text PDF

Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!