In this paper, an in-depth study of cross-media semantic matching and user adaptive satisfaction analysis model is carried out based on the convolutional neural network. Based on the existing convolutional neural network, this paper uses rich information. The spatial correlation of cross-media semantic matching further improves the classification accuracy of hyperspectral images and reduces the classification time under user adaptive satisfaction complexity. Aiming at the problem that it is difficult for the current hyperspectral image classification method based on convolutional neural network to capture the spatial pose characteristics of objects, the problem is that principal component analysis ignores some vital information when retaining a few components. This paper proposes a polymorphism based on extension Attribute Profile Feature (EMAP) Stereo Capsule Network Model for Hyperspectral Image Classification. To ensure the model has good generalization performance, a new remote sensing image Pan sharpening algorithm based on convolutional neural network is proposed, which increases the model's width to extract the feature information of the image and uses dilated instead of traditional convolution. The experimental results show that the algorithm has good generalization while ensuring self-adaptive satisfaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078763 | PMC |
http://dx.doi.org/10.1155/2022/4244675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!