Although dorsal root ganglion (DRG) neurons have been so far classified according to the difference in their fibers (Aβ, Aδ, and C), this classification should be further subdivided according to gene expression patterns. We focused on oxytocin (OXT) and its related receptors, because OXT plays a local role in DRG neurons. We measured the mRNA levels of OXT, OXT receptor (OXTR), vasopressin V1a receptor (V1aR), transient receptor potential cation channel subfamily V member 1 (TRPV1), and piezo-type mechanosensitive ion channel component 2 (Piezo2) in single DRG neurons by using real-time PCR, and then performed a cluster analysis. According to the gene expression patterns, DRG neurons were classified into 4 clusters: Cluster 1 was characterized mainly by Piezo2, Cluster 2 by TRPV1, Cluster 4 by OXTR, and neurons in Cluster 3 did not express any of the target genes. The cell body diameter of OXT-expressing neurons was significantly larger in Cluster 1 than in Cluster 2. These results suggest that OXT-expressing DRG neurons with small cell bodies (Cluster 2) and large cell bodies (Cluster 1) probably correspond to C-fiber neurons and Aβ-fiber neurons, respectively. Furthermore, the OXT-expressing neurons contained not only TRPV1 but also Piezo2, suggesting that OXT may be released by mechanical stimulation regardless of nociception. Thus, mechanoreception and nociception themselves may induce the autocrine/paracrine function of OXT in the DRG, contributing to alleviation of pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082903PMC
http://dx.doi.org/10.1186/s13041-022-00927-6DOI Listing

Publication Analysis

Top Keywords

drg neurons
20
neurons
11
cluster
9
dorsal root
8
root ganglion
8
neurons classified
8
gene expression
8
expression patterns
8
oxt-expressing neurons
8
cell bodies
8

Similar Publications

Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.

View Article and Find Full Text PDF

The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.

View Article and Find Full Text PDF

TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem

January 2025

Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:

Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!