Alterations of insulin signaling in diabetes are associated with podocyte injury, proteinuria, and renal failure. Insulin stimulates glucose transport to cells and regulates other intracellular processes that are linked to cellular bioenergetics, such as autophagy, gluconeogenesis, fatty acid metabolism, and mitochondrial homeostasis. The dysfunction of mitochondrial dynamics, including mitochondrial fusion, fission, and mitophagy, has been observed in high glucose-treated podocytes and renal cells from patients with diabetes. Previous studies showed that prolonged hyperglycemia is associated with the development of insulin resistance in podocytes, and high glucose-treated podocytes exhibit an increase in mitochondrial fission and decrease in markers of mitophagy. In the present study, we found that deficiency of the main mitophagy protein PTEN-induced kinase 1 (PINK1) significantly increased albumin permeability and hampered glucose uptake to podocytes. We suggest that PINK1 inhibition impairs the insulin signaling pathway, in which lower levels of phosphorylated Akt and membrane fractions of the insulin receptor and glucose transporter-4 were observed. Moreover, PINK1-depleted podocytes exhibited lower podocin and nephrin expression, thus identifying a potential mechanism whereby albumin leakage increases under hyperglycemic conditions when mitophagy is inhibited. In conclusion, we found that PINK1 plays an essential role in insulin signaling and the maintenance of proper permeability in podocytes. Therefore, PINK1 may be a potential therapeutic target for the treatment or prevention of diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00109-022-02204-4 | DOI Listing |
J Nutr Biochem
January 2025
Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA. Electronic address:
Diabetes is a global health issue affecting over 6% of the world and 11 % of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs).
View Article and Find Full Text PDFHormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFThe use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.
View Article and Find Full Text PDFBackgrounds And Aims: Type 2 diabetes and its complications are assumed to be major public health problems globally. Zinc is one of the elements that play a part in insulin secretion and signaling. Therefore, this study seeks the answer to the following question: "What are the effects of 220 mg zinc sulfate supplementation on the weight, blood pressure, and glycemic control of patients with Type 2 diabetes?".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!