Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse.

Sci Rep

Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.

Published: May 2022

The photothrombotic stroke model relies on the interaction between photosensitive-dye and light for clot formation. Interestingly, the relationship between the length of light exposure and stroke-outcome has never been examined. This model has yet to be established in the FVB/N strain, even though stroke-outcomes are strain-specific. Therefore, this study aimed to examine the effect of different lengths of light exposure in two strains of mice on photothrombotic stroke. Male FVB/N and C57Bl/6 mice were subjected to stroke using 15, 18, or 20-min light exposure. Mice underwent functional testing for up to 7 days. Infarct volume was assessed with thionin staining, and cellular responses to injury analysed via immunofluorescence at 7-days post-stroke. Blood brain barrier (BBB) breakdown was assessed using Evans blue dye at 4.5-h post-stroke. Increasing light exposure from 15 to 20-min increased infarct volume but not functional deficit. Interestingly, there were strain-specific differences in functional outcomes, with FVB/N mice having less deficit on the hanging wire test than C57BI/6 after 15-min of light exposure. The opposite was seen in the adhesive removal test. There was no difference in the number of neurons, astrocytes, microglia, macrophages, and T cells between the strains, despite FVB/N mice demonstrating greater BBB breakdown and an enlarged spleen post-stroke. Increasing light exposure systematically increases infarct volume but does not worsen functional outcomes. FVB/N and C57Bl/6 mice exhibit subtle differences in functional outcomes post stroke, which highlights the need to choose tests which are appropriate for the mouse strain being used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085761PMC
http://dx.doi.org/10.1038/s41598-022-11793-6DOI Listing

Publication Analysis

Top Keywords

light exposure
24
infarct volume
12
functional outcomes
12
photothrombotic stroke
8
fvb/n c57bl/6
8
c57bl/6 mice
8
bbb breakdown
8
post-stroke increasing
8
increasing light
8
differences functional
8

Similar Publications

Bi+ men are more likely to use alcohol and drugs than heterosexual and often gay men. The minority stress model is the predominant framework for understanding these disparities, but it is unknown whether this framework is consistent with bi+ men's perspectives. As part of an online survey, 69 bi+ young men (ages 18-29; 29% transgender) were asked why they think bisexual men are more likely to use alcohol and drugs than other men (including gay men).

View Article and Find Full Text PDF

Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.

View Article and Find Full Text PDF

Objectives: Both intrinsic and extrinsic factors cause skin aging. Intrinsic aging is characterized by decreased collagen density, particularly collagen types I (COL1A1) and III (COL3A1), and an increase in the COL1/COL3 ratio. Extrinsic aging, primarily due to ultraviolet light exposure, leads to photoaging, which causes collagen fragmentation and reduced production, leading to skin sagging.

View Article and Find Full Text PDF

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!