Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are often characterized by a low metabolic state, against which most clinically used antibiotics are ineffective. Here, we show that tolerance readily evolves against antibiotics that are strongly dependent on bacterial metabolism, but does not arise against antibiotics whose efficacy is only minimally affected by metabolic state. We identify a mechanism of tolerance evolution in E. coli involving deletion of the sodium-proton antiporter gene nhaA, which results in downregulated metabolism and upregulated stress responses. Additionally, we find that cycling of antibiotics with different metabolic dependencies interrupts evolution of tolerance in vitro, increasing the lifetime of treatment efficacy. Our work highlights the potential for limiting the occurrence and extent of tolerance by accounting for antibiotic dependencies on bacterial metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085803 | PMC |
http://dx.doi.org/10.1038/s41467-022-30272-0 | DOI Listing |
Drug Metab Dispos
January 2025
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Javelin Biotech, Inc, Woburn, Massachusetts. Electronic address:
Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during preclinical evaluation for DDIs. In vitro primary human hepatocytes (PHH) models are only applicable for short-term induction studies because of their rapid loss of metabolic function.
View Article and Find Full Text PDFPLoS One
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
Mol Biol Rep
January 2025
Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!