Discovering biomarkers of drug response and finding powerful drug combinations can support the reuse of previously abandoned cancer drugs in the clinic. Indisulam is an abandoned drug that acts as a molecular glue, inducing degradation of splicing factor RBM39 through interaction with CRL4 Here, we performed genetic and compound screens to uncover factors mediating indisulam sensitivity and resistance. First, a dropout CRISPR screen identified SRPK1 loss as a synthetic lethal interaction with indisulam that can be exploited therapeutically by the SRPK1 inhibitor SPHINX31. Moreover, a CRISPR resistance screen identified components of the degradation complex that mediate resistance to indisulam: DCAF15, DDA1, and CAND1. Last, we show that cancer cells readily acquire spontaneous resistance to indisulam. Upon acquiring indisulam resistance, pancreatic cancer (Panc10.05) cells still degrade RBM39 and are vulnerable to BCL-xL inhibition. The better understanding of the factors that influence the response to indisulam can assist rational reuse of this drug in the clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9095732 | PMC |
http://dx.doi.org/10.26508/lsa.202101348 | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFNutrients
December 2024
Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality.
View Article and Find Full Text PDFNutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye.
Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!