Evolutionary aspect of Miltefosine transporter proteins in Leishmania major.

Adv Protein Chem Struct Biol

National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune, India. Electronic address:

Published: May 2022

Transporter proteins, P-glycoprotein (P-gp) and P4ATPase-CDC50, are responsible for the transport of Miltefosine drug across cell membrane of a protozoan parasite Leishmania major. Mutations or change in activity of these proteins may lead to emergence of resistance in the parasite. Owing to the structural and functional importance of these transporter proteins, we have tried to decipher the evolutionary divergence of these Miltefosine transporter proteins across different forms of life including Protists, Fungi, Plants and Animals. We retrieved 96, 207, and 189 sequences of P-gp, P4ATPase and CDC50 proteins respectively, across diverse variety of organisms for the conserved analysis. Phylogenetic trees were constructed for these three transporter proteins based on Bayesian posterior probability inference. The evolutionary analysis concluded that these proteins remain highly conserved throughout the species diversity but still substantial differences in the proteins for host (Homo sapiens) and parasite (L. major) were observed which have led in targeting these Miltefosine transporter proteins in a parasite specific manner. The functional and structural components observed in terms of pattern resulting from the variability in the phylogenetic tree are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.apcsb.2022.01.005DOI Listing

Publication Analysis

Top Keywords

transporter proteins
24
miltefosine transporter
12
proteins
10
leishmania major
8
transporter
6
evolutionary aspect
4
miltefosine
4
aspect miltefosine
4
proteins leishmania
4
major transporter
4

Similar Publications

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

mRNA export factors store nascent transcripts within nuclear speckles as an adaptive response to transient global inhibition of transcription.

Mol Cell

January 2025

Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.

View Article and Find Full Text PDF

Beneficial mutualistic fungus Suillus luteus provided excellent buffering insurance in Scots pine defense responses under pathogen challenge at transcriptome level.

BMC Plant Biol

January 2025

Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.

Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.

View Article and Find Full Text PDF

Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.

View Article and Find Full Text PDF

Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!