The glycosylated receptor-binding domain (glycoRBD) of SARS-CoV-2 can induce protective neutralizing antibodies to function as a vaccine. However, it is unclear whether vaccines using non-glycosylated RBD (non-glycoRBD) can induce protective immunity. Here, we report the efficacy of a SARS-CoV-2 non-glycoRBD vaccine produced by prokaryotic system in mice. The recombinant non-glycoRBD protein was overexpressed in Escherichia coli in the form of inclusion bodies, and was obtained after renaturation and three-step purification. From HPLC analysis, the purity of the RBD was 99%. Additionally, angiotensin converting enzyme 2 (ACE2)-binding assays revealed that E.coli-derived non-glycoRBD had binding activity consistent with glycoRBD. The RBD was formulated with CpG ODN and Al(OH) adjuvants and the obtained RBD candidate vaccine elicited potent antibody responses and neutralized SARS-CoV-2 wild-type, Delta, and Omicron pseudoviruses. In summary, our data showed that a non-glycoRBD candidate vaccine produced by E.coli provided a robust immune response and had pseudovirus neutralizing activity, making it a solid candidate vaccine for protection against SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075978 | PMC |
http://dx.doi.org/10.1016/j.jim.2022.113279 | DOI Listing |
J Virol
January 2025
MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.
View Article and Find Full Text PDFiScience
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
The importance of humoral immunity in combating TB has gained extensive recognition. In this study, a subunit vaccine named Ag85A-LpqH (AL) was prepared by fusing the antigen Ag85A proved to induce robust T cell immune responses, and LpqH was shown to produce protective antibodies. The prevention and BCG prime-boost mouse models were established to test the vaccine efficacy.
View Article and Find Full Text PDFHeliyon
January 2025
Tehran Azad University of Medical Sciences, Faculty of Pharmaceutical Sciences, Iran.
The significance of vaccine development has gained heightened importance in light of the pandemic. In such critical circumstances, global citizens anticipate researchers in this field to swiftly identify a vaccine candidate to combat the pandemic's root cause. It is widely recognized that the vaccine design process is traditionally both time-consuming and costly.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:
Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA. Electronic address:
By evaluating the stability profiles of each component of a vaccine candidate (antigens, adjuvants), formulation conditions to mitigate vaccine instability can be identified. In this work, two recombinant Cytomegalovirus (CMV) glycoprotein antigens (gB, Pentamer) were formulated with SPA14, a novel liposome-based adjuvant system containing a synthetic TLR4 agonist (E6020) and a saponin (QS21). Analytical characterization and accelerated stability studies were performed with the two CMV antigens, formulated with and without SPA14, under various conditions (temperature, pH, excipients).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!