Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The physiology of males and females can be vastly different, complicating interpretation of toxicological and physiological data. The objectives of this study were to elucidate the sex differences in the microbiome-gastrointestinal (GI) transcriptome of adult zebrafish. We compared microbial composition and diversity in both males and females fed the same diet and housed in the same environment. There were no sex-specific differences in weight gain nor gastrointestinal morphology based on histopathology. There was no difference in gut microbial diversity, richness (Shannon and Chao1 index) nor predicted functional composition of the microbiome between males and females. Prior to post-hoc correction, male zebrafish showed higher abundance for the bacterial families Erythrobacteraceae and Lamiaceae, both belonging to the phyla Actinobacteria and Proteobacteria. At the genus level, Lamia and Altererythrobacter were more dominant in males and an unidentified genus in Bacteroidetes was more abundant in females. There were 16 unique differentially expressed transcripts in the gastrointestinal tissue between male and female zebrafish (FDR corrected, p < 0.05). Relative to males, the mRNA expression for trim35-9, slc25a48, chchd3b, csad, and hsd17b3 were lower in female GI while cyp2k6, adra2c, and bckdk were higher in the female GI. Immune and lipid-related gene network expression differed between the sexes (i.e., cholesterol export and metabolism) as well as networks related to gastric motility, gastrointestinal system absorption and digestion. Such data provide clues as to putative differences in gastrointestinal physiology between male and female zebrafish. This study identifies host-transcriptome differences that can be considered when interpreting the microgenderome of zebrafish in studies investigating GI physiology and toxicology of fishes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2022.100993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!