Quality of recycling: Urgent and undefined.

Waste Manag

Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

Published: June 2022

Quality of recycling is a concept used by many authors in the scientific literature and the EU legislator. However, a clear definition of what is intended for quality of recycling and a framework for operationalising it is lacking. Most studies, while proposing indicators reflecting quality, leave the concept of quality largely undefined. Such lack of clarity is an obstacle to the conception of robust policies addressing recycling and circular economy. In this article, we review the available studies investigating on recycling quality, synthetize the approaches available and conclude suggesting a way forward for research to operationalise the definition to support circular economy policy measures and monitoring. Essentially, quality is not an on/off criterion. The definition of quality of recycling should consider that quality depends on technical characteristics of the recyclate, which determine if it is adequate (thus functional) for a certain end application or not. Furthermore, it should consider that the recyclate can be used in different end applications over different markets and that can be adequate for substitution of primary resources in certain applications, but less or not in others. At system-wide level, this results in a certain degree of virgin resource substitution. To this end, preserving functionality, i.e. minimising the recyclate loss of functions via functional recycling, is key. Drawing upon studies on waste management, life cycle assessment and resource dissipation, we link the concept of functionality to substitutability of virgin resources and broader suitability in the circular economy, striving to show the linkages between different perspectives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.04.037DOI Listing

Publication Analysis

Top Keywords

quality recycling
16
circular economy
12
quality
9
recycling
6
recycling urgent
4
urgent undefined
4
undefined quality
4
recycling concept
4
concept authors
4
authors scientific
4

Similar Publications

Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering.

BMC Plant Biol

January 2025

Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.

View Article and Find Full Text PDF

Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.

View Article and Find Full Text PDF

Multi-effect synergistic induction of unsaturated MnO on sandy sediment for enhanced manganese adsorption and byproduct resource recovery in solar evaporation.

J Hazard Mater

January 2025

School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China. Electronic address:

The efficient removal of Mn(II) from wastewater is crucial for safeguarding water quality, yet existing adsorbents face significant challenges, including high costs, poor resistance to ionic interference, and scalability limitations. This study addresses these challenges by utilizing abundant natural sandy sediment (SS) as a substrate to load unsaturated MnO via in-situ oxidation, creating a novel adsorbent (MOSS). MOSS exhibits a remarkable Mn(II) adsorption capacity of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!