Childhood-onset torsin dystonia (DYT1) is a rare hereditary movement disorder and usually caused by a heterozygous GAG deletion (c.907-909) in the TOR1A gene (ΔE, p.Glu303del). The neuronal functions of torsin proteins and the pathogenesis of ΔE mutation are not clear. Previously, we have generated a hiPSC line from DYT1 patient fibroblast cells. In this study, we genetically corrected GAG deletion and obtained two isogenic control lines. These hiPSC lines contain the wild-type TOR1A sequence, showed the normal stem cell morphology and karyotype, expressed pluripotency markers, and differentiated into three germ layers, providing a valuable resource in DYT1 research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366766PMC
http://dx.doi.org/10.1016/j.scr.2022.102807DOI Listing

Publication Analysis

Top Keywords

isogenic control
8
heterozygous gag
8
tor1a gene
8
gag deletion
8
generation gene-corrected
4
gene-corrected isogenic
4
control cell
4
cell lines
4
dyt1
4
lines dyt1
4

Similar Publications

Lithium restores nuclear REST and Mitigates oxidative stress in down syndrome iPSC-Derived neurons.

Neuroscience

January 2025

Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia. Electronic address:

Down syndrome (DS), caused by trisomy 21, is characterized by intellectual disability and accelerated aging, with chronic oxidative stress contributing to neurological deficits. REST (Repressor Element-1 Silencing Transcription factor), a crucial regulator of neuronal gene expression implicated in DS neuropathology. This study investigates the neuroprotective potential of lithium, a mood stabilizer with known cognitive-enhancing effects, in restoring levels of REST.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). However, the role of these pathologies in Down Syndrome associated Alzheimer's Disease (DSAD) is unknown. Decades of research describe a relationship between mitochondrial function and Aβ production.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indianapolis, IN, USA.

Background: The National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD) is continuing to develop a bank of induced pluripotent stem cells (iPSCs) that are available by request to the Alzheimer's disease (AD) research community.

Methods: As part of the pipeline for quality control of received cell lines, DNA was extracted for all lines and was submitted for whole genome sequencing (WGS). Paired-end WGS data was generated using the Illumina NovaSeq 6000 and processed following GATK best practices using the Sentieon pipeline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!