Targeting stem cells to cartilage lesions has the potential to enhance engraftment and chondrogenesis. Denatured type II collagen fibrils (gelatin) are exposed in lesions at the surface of osteoarthritic articular cartilage and are therefore ideal target sites. We have designed and investigated chimeric mutants of the three modules of the MMP-2 collagen binding domain (CBD) as potential ligands for stem cell targeting. We expressed full-length CBD for the first time and used it to identify the most important amino acid residues for binding to gelatin. Module 2 of CBD had the highest affinity binding to both Type I and Type II gelatin, whereas module 1 showed specificity for type II gelatin and module 3 for type I gelatin. We went on to generate chimeric forms of CBD consisting of three repeats of module 1 (111), module 2 (222) or module 3 (333). 111 lacked solubility and could not be further characterised. However 222 was found to bind to type II gelatin 14 times better than CBD, suggesting it would be optimal for attachment to cartilage lesions, whilst 333 was found to bind to type I gelatin 12 times better than CBD, suggesting it would be optimal for attachment to lesions in type I collagen-rich tissues. We coated 222 onto the external membrane of Mesenchymal Stem Cells and demonstrated higher attachment of the coated cells to type II gelatin than uncoated cells. We conclude that the three modules of CBD each have specific biological properties that can be exploited for targeting stem cells to cartilage lesions and other pathological sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121547 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:
Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, PR China. Electronic address:
There are two bottlenecks in the treatment of TMJOA (temporomandibular joint osteoarthritis): ① lacking of easy-to-use repairing materials for damaged condylar cartilage; ② local inflammation interfering with in situ regeneration. In response to them, we constructed a biomimetic tilapia type I gelatin/hyaluronic acid (TGI/HA) hydrogel in this paper. It was endowed with the capability to immunoregulate mircoenvironment and concurrently induce regeneration in multiple ways.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China. Electronic address:
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.
View Article and Find Full Text PDFFront Surg
December 2024
Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
Background: Tendon repairs often result in adhesion formation which can cause persisting functional deficits. Close proximity of healing tissues increases friction during tendon excursion, often leading to tendon tethering postoperatively. Despite continued improvements in techniques for tendon repairs, there is currently no consensus on the most effective modality to reduce adhesion formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!