A bifunctional GeC/SnSSe heterostructure for highly efficient photocatalysts and photovoltaic devices.

Nanoscale

Instituto de Física, Universidade de Brasília, Brasília-DF 70919-970, Brazil.

Published: May 2022

Alongside highly efficient photocatalysts, high photovoltaic performance is also a key element for efficiently harvesting solar energy. Developing bifunctional materials which satisfy concurrently these two demands is an appealing strategy for solving the current serious energy and environmental issues. Based on first-principles and quantum transport calculations, we designed this kind of novel bifunctional material: Janus GeC/SnSSe van der Waals heterostructure (vdWH). We demonstrate that it is a highly efficient direct Z-scheme photocatalyst. However, unlike traditional direct Z-scheme photocatalysts, the GeC/SnSSe vdWH possesses a small energy separation between the low conduction band located in SnSSe and the high valence band residing in the GeC layer, which significantly fosters the interlayer charge transfer. Hence, its solar-to-hydrogen conversion efficiency reaches as high as 68.37%. Moreover, we also find that tensile strain promotes an astonishing increase in photovoltaic performance, , 4% tensile strain leads to an increase of the photocurrent by 40%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr01387hDOI Listing

Publication Analysis

Top Keywords

highly efficient
12
efficient photocatalysts
8
photovoltaic performance
8
direct z-scheme
8
tensile strain
8
bifunctional gec/snsse
4
gec/snsse heterostructure
4
heterostructure highly
4
photocatalysts photovoltaic
4
photovoltaic devices
4

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

BACKGROUND Dental caries removal is conventionally done using carbide burs, but non-metallic polymer burs have recently been developed with the aim of being more selective and causing less pain. The objective of the study is to evaluate and compare the effectiveness of caries removal, time taken, and patient compliance during restorations using smart bur and carbide burs in pediatric patients. MATERIAL AND METHODS A clinical study was designed and conducted at the Pedodontics Outpatient Department, with a focus on 40 children between 6 and 12 years old, who were split into 2 groups consisting of 20 children each: group 1, using a carbide conventional rotary bur, and group 2, using a smart bur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!