Dielectric spectroscopy has been used in the study and development of non-invasive glucose monitoring (NIGM) sensors, including the range of microwave frequencies. Dielectric relaxation of red blood cell (RBC) cytosolic water in the microwave frequency band has been shown to be sensitive to variations in the glucose concentration of RBC suspensions. It has been hypothesized that this sensitivity stems from the utilization of D-glucose by RBCs. To verify this proposition, RBCs were pretreated with inhibitors of D-glucose uptake (cytochalasin B and forskolin). Then their suspensions were exposed to different D-glucose concentrations as measured by microwave dielectric spectroscopy (MDS) in the 500 MHz-40 GHz frequency band. After incubation of RBCs with either inhibitor, the dielectric response of water in the cytoplasm, and specifically its relaxation time, demonstrated minimal sensitivity to the change of D-glucose concentration in the medium. This result allows us to conclude that the sensitivity of MDS to glucose uptake is associated with variations in the balance of bulk and bound RBC cytosolic water due to intracellular D-glucose metabolism, verifying the correctness of the initial hypothesis. These findings represent a further argument to establish the dielectric response of water as a marker of glucose variation in RBCs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-022-01602-3DOI Listing

Publication Analysis

Top Keywords

dielectric response
12
glucose uptake
8
microwave dielectric
8
dielectric spectroscopy
8
rbc cytosolic
8
cytosolic water
8
frequency band
8
response water
8
dielectric
6
d-glucose
5

Similar Publications

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

As a graphene-like material, h-BN has stimulated great research interest recently due to its potential application for next-generation electronic devices. Herein, a systematic theoretical investigation of electronic structures and optical properties of C-doped and Cu-Al co-doped h-BN is carried out by the first-principles calculations. Firstly, two different C-doped h-BN structures for the para-position and ortho-position are constructed.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand.

J Am Chem Soc

January 2025

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.

View Article and Find Full Text PDF

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!