In a growing number of social and clinical scenarios, machine learning (ML) is emerging as a promising tool for implementing complex multi-parametric decision-making algorithms. Regarding ovarian cancer (OC), despite the standardization of features that can support the discrimination of ovarian masses into benign and malignant, there is a lack of accurate predictive modeling based on ultrasound (US) examination for progression-free survival (PFS). This retrospective observational study analyzed patients with epithelial ovarian cancer (EOC) who were followed in a tertiary center from 2018 to 2019. Demographic features, clinical characteristics, information about the surgery and post-surgery histopathology were collected. Additionally, we recorded data about US examinations according to the International Ovarian Tumor Analysis (IOTA) classification. Our study aimed to realize a tool to predict 12 month PFS in patients with OC based on a ML algorithm applied to gynecological ultrasound assessment. Proper feature selection was used to determine an attribute core set. Three different machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and K-nearest neighbors (KNN), were then trained and validated with five-fold cross-validation to predict 12 month PFS. Our analysis included n. 64 patients and 12 month PFS was achieved by 46/64 patients (71.9%). The attribute core set used to train machine learning algorithms included age, menopause, CA-125 value, histotype, FIGO stage and US characteristics, such as major lesion diameter, side, echogenicity, color score, major solid component diameter, presence of carcinosis. RFF showed the best performance (accuracy 93.7%, precision 90%, recall 90%, area under receiver operating characteristic curve (AUROC) 0.92). We developed an accurate ML model to predict 12 month PFS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633520PMC
http://dx.doi.org/10.1007/s00404-022-06578-1DOI Listing

Publication Analysis

Top Keywords

machine learning
16
12 month pfs
16
ovarian cancer
12
predict 12 month
12
applied gynecological
8
gynecological ultrasound
8
progression-free survival
8
attribute core
8
core set
8
learning algorithms
8

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!