Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202101947R | DOI Listing |
Ocul Immunol Inflamm
December 2024
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.
Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.
Stem Cell Res Ther
December 2024
Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
Background: Mesenchymal stem cells may have neuroprotective and tissue regenerative capabilities and the potential to rescue retinal degeneration in chorioretinal diseases including myopic chorioretinal atrophy. Transplantation of human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) suspensions has been clinically conducted to treat retinal degenerative diseases. However, serious side effects including proliferative vitreoretinopathy and epiretinal membrane formation have been reported.
View Article and Find Full Text PDFJ Fr Ophtalmol
December 2024
Department of Ophthalmology, Kasr El Aini Hospital, Cairo University, El-Manial, Cairo, Egypt.
Purpose: To evaluate the outcomes of pars plana vitrectomy (PPV) for full thickness macular holes (FTMH) in ocular Behçet's disease.
Methods: Eyes with FTMH as confirmed on optical coherence tomography in patients with active ocular Behçet's disease (AOBD) were included in this study. These eyes underwent PPV, epiretinal membrane (ERM) removal, internal limiting membrane (ILM) peel, and a tamponade injection.
Sci Rep
November 2024
Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.
We studied which retinal area controls short-term axial eye shortening when human subjects were exposed to + 3.0D monocular defocus. A custom-built infrared eye tracker recorded the point of fixation while subjects watched a movie at a 2 m distance.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China.
Glaucoma is an optic degenerative neuropathy that is driven by a vicious cycle of oxidative stress and mechanical stress. Current clinical treatments aim exclusively at alleviating mechanical stress by reducing the intraocular pressure (IOP). With the unattended oxidative stress, recurrence and deterioration of mechanical stress are inevitable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!