Background: Re-emerging viral attacks are catastrophic for health and economy. It is crucial to grasp the viral life cycle, replication and mutation policies and attack strategies. It is also absolute to fathom the cost-efficient antiviral remedies earliest possible.
Methods: We propose to use a lab-grown organ (re-cellularized scaffold of sheep kidney) for viral culture and understand its interaction with extra-cellular matrices of the host tissue.
Results: Our findings showed that the chikungunya virus (CHIKV) could be better replicated in tissue-engineered bio models than cell culture. A decrease in ds-DNA levels emphasized that CHIKV propagates within the re-cellularized and cell culture models. There was an increase in the viral titres (pfu/ml) in re-cellularized scaffolds and control groups. The lipid peroxidation levels were increased as the infection was progressed in cell culture as well as re-cellularized and control groups. The onset and progress of the CHIKV attacks (cellular infection) lead to transmembrane domain fatty acid peroxidation and DNA breakdown, landing in cellular apoptosis. Simultaneously cell viability was inversely proportional to non-viability, and it decreased as the infection progressed in all infected groups. Histological findings and extracellular matrix evaluation showed the impairment in medullary, cortex regions due to propagation of CHIKV and plaques generations.
Conclusion: This method will be a breakthrough for future virus culture, drug interaction and to study its effect on extracellular matrix alterations. This study will also allow us to investigate the correct role of any vaccine or antiviral drugs and their effects on re-engineered organ matrices before moving towards the animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082465 | PMC |
http://dx.doi.org/10.1007/s13770-022-00449-1 | DOI Listing |
Ann Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Cairo, 11241, Egypt.
The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.
View Article and Find Full Text PDFJ Oral Pathol Med
January 2025
Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil.
Background: Cell culture studies play an important role in addressing fundamental scientific questions. However, inadequate reporting of these studies results in a lack of transparency and reproducibility. Recognizing the need for improvement, several ongoing efforts, such as CRIS guidelines and the ICLAC checklist, are focused on enhancing best practices for in vitro studies.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:
RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!