Objectives: Uveal melanoma (UM) is the most common primary intraocular tumour in adults. UM has a poor overall prognosis and ~50% of patients progress to metastatic disease that has a median survival of 5.2 months. There are currently no proven pharmacological treatments for primary or metastatic UM. Research efforts continue to seek new agents. Many natural compounds have shown promising anti-UM activity in in-vitro and/or in-vivo studies. This review summarises the current findings for natural compounds that may be potentially useful in treating UM.
Key Findings: Literature suggests that natural compounds, such as pristimerin, picropodophyllin, oridonin, zeaxanthin, withaferin and FR-900359, may be promising candidate compounds to treat UM. Most of these compounds have demonstrated satisfactory efficacy in inhibiting in-vitro UM cell growth.
Summary: The evidence regarding the anti-UM effects of natural compounds is mainly limited to in-vitro studies; to date, only a small number of these agents have been evaluated in vivo. The molecular mechanisms underpinning the anti-UM properties of these compounds remain largely undefined. Further studies are required to evaluate the in-vivo anticancer activity, appropriate dosage regimen and safety of natural compounds that could be developed for use in UM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jpp/rgac009 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Saxony, Germany.
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.
View Article and Find Full Text PDFBMC Chem
January 2025
The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
Microbiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Sci Rep
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.
Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!