A major limitation for the efficient and high-throughput structure analysis of biomolecules using cryogenic electron microscopy (cryo-EM) is the difficulty of preparing cryo-EM samples with controlled ice thickness at the nanoscale. The silicon (Si)-based chip, which has a regular array of micro-holes with graphene oxide (GO) window patterned on a thickness-controlled silicon nitride (SixNy) film, has been developed by applying microelectromechanical system (MEMS) techniques. UV photolithography, chemical vapor deposition, wet and dry etching of the thin film, and drop-casting of 2D nanosheet materials were used for mass-production of the micro-patterned chips with GO windows. The depth of the micro-holes is regulated to control the ice thickness on-demand, depending on the size of the specimen for cryo-EM analysis. The favorable affinity of GO toward biomolecules concentrates the biomolecules of interest within the micro-hole during cryo-EM sample preparation. The micro-patterned chip with GO windows enables high-throughput cryo-EM imaging of various biological molecules, as well as inorganic nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/63739 | DOI Listing |
Small Methods
December 2024
Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
In situ electrochemical liquid phase transmission electron microscopy (LP-TEM) measurements utilize micro-chip three-electrode cells with electron transparent silicon nitride windows that confine the liquid electrolyte. By imaging electrocatalysts deposited on micro-patterned electrodes, LP-TEM provides insight into morphological, phase structure, and compositional changes within electrocatalyst materials under electrochemical reaction conditions, which have practical implications on activity, selectivity, and durability. Despite LP-TEM capabilities becoming more accessible, in situ measurements under electrochemical reaction conditions remain non-trivial, with challenges including electron beam interactions with the electrolyte and electrode, the lack of well-defined experimental workflows, and difficulty interpreting particle behavior within a liquid.
View Article and Find Full Text PDFRSC Adv
October 2024
Department of Chemical Engineering, Kyungpook National University Daegu Republic of Korea
Microfabrication is critical to the advancement of lab-on-chip devices by enabling the creation of high-precision, complex electrode structures. Traditional photolithography, commonly used to fabricate micro-patterned electrodes, involves complex and multi-step processes that can be costly and time-consuming. In this research, we present a method using 3D-printed shadow masks for electrode fabrication, offering a simpler, cost-effective alternative to traditional methods.
View Article and Find Full Text PDFJ Vis Exp
March 2023
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology.
Truong, C. D. et al.
View Article and Find Full Text PDFCurr Protoc
September 2022
Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea.
Tumor spheroid models are widely used for drug screening as in vitro models of the tumor microenvironment. There are various ways in which tumor spheroid models can be prepared, including the self-assembly of cells using low-adherent plates, micro-patterned plates, or hanging-drop plates. Recently, drug high-throughput screening (HTS) approaches have incorporated the use of these culture systems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
In this work, a compact, near-hysteresis-free hydraulic pressure sensor is presented through interface engineering in a GaN chip-scale optical device. The sensor consists of a monolithic GaN-on-sapphire device responsible for light emission and detection and a multilevel microstructured polydimethylsiloxane (PDMS) film prepared through a low-cost molding process using sandpaper as a template. The micro-patterned PDMS film functions as a pressure-sensing medium to effectively modulate the reflectance properties at the sapphire interface during pressure loading and unloading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!