The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202107325DOI Listing

Publication Analysis

Top Keywords

chirality light-matter
8
light-matter interactions
8
light-matter interaction
4
interaction scientific
4
scientific effort
4
effort control
4
control interaction
4
interaction light
4
light matter
4
matter grown
4

Similar Publications

Unidirectional chiral scattering from single enantiomeric plasmonic nanoparticles.

Nat Commun

January 2025

Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK.

Controlling scattering and routing of chiral light at the nanoscale is important for optical information processing and imaging, quantum technologies as well as optical manipulation. Here, we introduce a concept of rotating chiral dipoles in order to achieve unidirectional chiral scattering. Implementing this concept by engineering multipole excitations in helicoidal plasmonic nanoparticles, we experimentally demonstrate enantio-sensitive and highly-directional forward scattering of circularly polarised light.

View Article and Find Full Text PDF

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Chiral Light-Matter Interactions with Thermal Magnetoplasmons in Graphene Nanodisks.

Nano Lett

January 2025

Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain.

We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!